- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Barth, Aaron J. (1)
-
Begelman, Mitchell C (1)
-
Behar, Ehud (1)
-
Bempong-Manful, Emmanuel K (1)
-
Bianchi, Stefano (1)
-
Bray, Justin D (1)
-
Bruni, Gabriele (1)
-
Cenko, S Bradley (1)
-
Georganopoulos, Markos (1)
-
Ghosh, Ritesh (1)
-
Green, David A (1)
-
Guainazzi, Matteo (1)
-
Gurwell, Mark A (1)
-
Hankla, Amelia M (1)
-
Ho, Luis C. (1)
-
Kara, Erin (1)
-
Keating, Garrett K (1)
-
La_Franca, Fabio (1)
-
Laha, Sibasish (1)
-
Laor, Ari (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present multifrequency (5–345 GHz) and multiresolution radio observations of 1ES 1927+654, widely considered one of the most unusual and extreme changing-look active galactic nuclei (CL-AGNs). The source was first designated a CL-AGN after an optical outburst in late 2017 and has since displayed considerable changes in X-ray emission, including the destruction and rebuilding of the X-ray corona in 2019–2020. Radio observations prior to 2023 show a faint and compact radio source typical of a radio-quiet AGN. Starting in 2023 February, 1ES 1927+654 began exhibiting a radio flare with a steep exponential rise, reaching a peak 60 times previous flux levels, and has maintained this higher level of radio emission for over a year to date. The 5–23 GHz spectrum is broadly similar to gigahertz-peaked radio sources, which are understood to be young radio jets less than ∼1000 yr old. Recent high-resolution Very Long Baseline Array observations at 23.5 GHz now show resolved extensions on either side of the core, with a separation of ∼0.15 pc, consistent with a new and mildly relativistic bipolar outflow. A steady increase in the soft X-ray band (0.3–2 keV) concurrent with the radio may be consistent with jet-driven shocked gas, though further observations are needed to test alternate scenarios. This source joins a growing number of CL-AGNs and tidal disruption events that show late-time radio activity, years after the initial outburst.more » « lessFree, publicly-accessible full text available January 20, 2026
-
Park, Daeseong; Barth, Aaron J.; Ho, Luis C.; Laor, Ari (, The Astrophysical Journal Supplement Series)Abstract We present a new empirical template for iron emission in active galactic nuclei (AGNs) covering the 4000–5600 Å range. The new template is based on a spectrum of the narrow-line Seyfert 1 galaxy Mrk 493 obtained with the Hubble Space Telescope. In comparison with the canonical iron template object I Zw 1, Mrk 493 has narrower broad-line widths, lower reddening, and a less extreme Eddington ratio, making it a superior choice for template construction. We carried out a multicomponent spectral decomposition to produce a template incorporating all the permitted and forbidden lines of Fe ii identified in the Mrk 493 spectrum over this wavelength range, as well as lines from Ti ii , Ni ii , and Cr ii . We tested the template by fitting it to AGN spectra spanning a broad range of iron emission properties, and we present a detailed comparison with fits using other widely used monolithic and multicomponent iron emission templates. The new template generally provides the best fit (lowest χ 2 ) compared to other widely used monolithic empirical templates. In addition, the new template yields more accurate spectral measurements including a significantly better match of the derived Balmer line profiles (H β , H γ , H δ ), in contrast with results obtained using the other templates. Our comparison tests show that the choice of iron template can introduce a systematic bias in measurements of the H β line width, which consequently impacts single-epoch black hole mass estimates by ∼0.1 dex on average and possibly up to ∼0.3–0.5 dex individually.more » « less
An official website of the United States government
